IMINE-ENAMINE ANNELATION: STEREOSELECTIVE SYNTHESES OF (+)-DEPLANCHEINE

Luisella Calabi, Bruno Danieli^{*}, Giordano Lesma and Giovanni Palmisano^{*}

Istituto di Chimica Organica della Facolta di Scienze - Via Venezian, 21 - 20133 Milan0 - Italy, Centro CNR di Studio per le Sostanze Organiche Naturali

Summary: Two new approaches to synthesis of $(+)$ -deplancheine (1) *UhfZ dsdctibed which utitieize the adkylation 06 the* imineenamine (2) as the key *ring-forming step*.

The synthesis of the simple indoloquinolizidine alkaloid deplancheine (I), isolated from a New Caledonian plant *Alstonia deplanchei* van Heurck and Müller Arg. a^{1a} has attracted the attention of several research groups. $^{1b-1}$

We report here the details of two efficient approaches to (+)-deplancheine taking advantage of the reactivity of the readily available imine-enamine (2) as ambident nucleophile $vs.$ electron-deficient alkenes.

Treatment of (2) with 1.1 equiv of α -methylene-y-butyrolactone in MeCN for 5 hr at 80°C gave an 84% yield of enaminone (3), m.p. 208°C (MeOH)³ Reduction of this with $LiAlH_A$ in boiling THF (1 hr), followed by reductive work-up with NaBH_A at 0° C (30 min) proceeded smoothly affording the alcohol (4)⁴as the sole product in 79% yield. The trisubstituted olefinic linkage in (1) was then elaborated with low selectivity in 58% overall yield from (4) via a threestep sequence. The alcohol (4), upon exposure to o-nitrophenyl selenocyanate⁵ in THF in the presence of $n-Bu_3P$ (3 hr, r.t.), provided the nicely crystalline selenide (5), m.p. 91°C(Et_2O)⁶ whose subsequent oxidation (NaIO₄, MeOH, -10°C, 4 hr) and base-induced $\frac{2}{3}$ μ -elimination⁷ (diisopropylamine work-up at r.t.) ga-

we rise to the vinyl quinolizine (6) .^{8,9} Attempts to eliminate the hydroxy group of (4) by any of the standard methods seemed unlikely to succeed because of N_b -participation.

Finally, (6) underwent double bond migration by heating (thick-walled tube) in degassed EtOH at 120°C for 1 hr in the presence of catalytic RhCl₃ trihydrate.¹⁰ Column chromatography followed by PLC on silica gel gave the desired (<u>+</u>)-deplancheine (1)(CH₂Cl₂-MeOH, 95:5; R_f 0.23)'' mer (7)(R_f0.47)¹² along with its (<u>Z</u>)-isoand unreacted (6)(R $_{\rm f}$ 0.34) as a 6:3:1 mixture.

In an effort to render the approach to (1) more stereoselective we examined an alternative scheme, the key feature of which was projected to be the synthesis of the (E) -enamide (8) by joining the phosphonate (9) with acetaldehyde under Wittig-Horner conditions. When an equimolecular mixture of (2) and methyl 2-(diethylphosphono)acrylate 13 in MeOH-C₆H₆ (1:1) was stirred at r.t. for 24 hr,the imino-phosphonate (10)''was obtained. Reduction of (10) with NaBH₄ in MeOH (0°C, 50 min) gave, with concomitant lactonization, the amidophosphonate (9) in 87% overall yield as a 9:l mixture of diastereoisomers, 15 which was used directly in the next step. Generation of the phosphoryl-stabilized anion derived from (9) was carried out by addition of NaH (2.1 equiv) to a solution of (9) in DME at 0° C. After 5 min, a solution of acetaldehyde (1.5 equiv) in DME was added, warmed at r.t. and processed after 10 min. Chromatographic purification produced the pure (E)-enamide (8), m.p. 239°C(Et₂O)¹⁶ in 83% yield $\left[\text{no } (\underline{z})\text{-isomer present}\right]$.

Selective reduction of carbonyl group in enamides is known to be difficult to achieve¹⁶ but careful reduction with LiAlH₄ in DME (-78^{*} \div 0[°]C, 30 min) or with AlH₃ in Et₂O-DME (1:1) (1 hr at r.t.) yielded the target compound (1) in 65% and 69% yields respectively.

The ketone **(11)**, a straightforward precursor of (1) and (7), was obtained in 63% overall yield by a two-step sequence which exploits the reactivity of (2) ν_{4} 1,3-difunctionalized propanes.¹⁷

Alkylation of (2) with 1.2 equiv of I-bromo-2,3-epoxypropane in refluxing MeCN (3 hr) in the presence of Hiinig's base, followed by reductive work-up (NaBH₄, MeOH, r.t.) led to alcohol (12)¹⁸ as a 1:1 diastereoisomeric mixture which was in turn oxidized (DMSO-DCC-orthophosphoric acid, r.t., 3 hr) to the sensitive ketone (11) .¹⁹

Extension of this annelation to suitably substituted α -methylene- γ -butyrolactones and phosphonoacrylates for the synthesis of \mathcal{C} orunanthé alkaloids is currently underway.

We are grateful to Dr. Joule for providing us with a generous sample of $(1)+(7)$ mixture and the procedure for separation of these isomers.

(9a) X:H; Y:P(0)(OEt)₂ (9b) $X: P(O) (OEt)_{2}$; $Y:H$

References and notes

- $\mathbf{1}$ a) R. Besselievre, J.-P. Cosson, B. C. Das, and H.-P. Husson, Tetrahedron Letters, 63(1980); b) D. Thielke, J. Wegener, and E. Winterfeldt, Chem. Ber., 108, 1791(1974); c) W.R.Ashcroft and J.A.Joule, Tetrahedron Letters, 2341 (1980); d) M.Hämeilä and M.Lounasmaa, Acta Chem.Scand., B, 35, 5(1981).
- $\mathfrak z$ T.Kametani, Y.Suzuki, H.Terasawa, and M.Ihara, J.C.S.Perkin I, 1211 (1979); B.Danieli, G.Lesma, and G.Palmisano, J.C.S.Chem.Commun., 109 (1980).
- 3 PMR (DMSO-d₆): δ 3.66 (1H, dt, J 12.5Hz, H-6 α), 4.16 (1H, t, J 6Hz, OH), 4.32 (1H, dt, J $12, 5Hz, H-6\beta)$, 5.74(1H,t,J 5Hz,H-1).
- v_{max} (CHCl₃):2850,2800,2760 cm⁻¹ [Bohlmann bands (Bb)]; PMR (DMSO-d_d): 63.54 (2H, 4 t, J $6Hz$, CH₂OH), 4.46(1H, t, J $6Hz$, OH).
- 5 P.A.Grieco, S.Gilman, and M.Nishizawa, J.Org.Chem., 41, 1485 (1976).
- $v_{\text{max}}(\text{CHCl}_3): 2830, 2790, 2740 \text{ cm}^{-1}(\text{Bb}); \text{ PMR}(\text{CDCl}_3): 67.78(\text{1H, br s,NH}), 8.38(\text{1H, NH}))$ 6 ddd, J 10, 1.5, 1Hz).
- $\boldsymbol{\mathcal{I}}$ K.B.Sharpless and M.Young, J.Org.Chem., 40, 947 (1975).
- 8 v_{max} (CHC1₃): 2850,2800,2750(Bb),915 cm⁻¹ (C=C); PMR(CDC1₃): 65.09(1H,dd,J lO,lHz,H-14), 5.15(lH,dd,J 18,lHz,H-14), 5.86(lH,ddd,J 18,10,7Hz,H-13), 7.80(lH,br s,NH).
- 9 The relative stereochemistry of (4) was firmly established by reductive removal of phenylselenyl group from (5) with Bu₃SnH-azobis(isobutyronitrile) in refluxing toluene (3 hr) to give the known (3R^{*}, 12bS^{*})-octahydroflavopereirine (13); CMR(CDCl₃): δ_C^2 9.9(C₂), 30.8(C₁), 37.8(C₃), 60.3(C₄), 61.8 (C_{12b}). [Cfr. E.Wenkert and B.Wickberg, <u>J.Amer.Chem.Soc.,84</u>,4914(1962)]
- 10 J.F.Harrod and A.J.Chalk, <u>J.Amer.Chem</u>.Soc., 86 , 1776(1964).</u>
- 11 PMR(200MHz,CDCl₃): 61.62(3H,d,J 6.5Hz,CH₃-C=), 3.06(1H,d,J 12Hz,H-4a), 3.35 $(1H,d,J 12Hz,H-4\beta)$, 3.42(1H,br d,J 11Hz,H-12b), 5.43(1H,q,J 6.5Hz,H-C=), 7.08 and 7.10(2H,2xt,J 8.5Hz,H-9 and H-IO), 7.29(lH,t,J 8Hz,H-II), 7.44 (lH,d,J 8Hz,H-8), 7.86(lH,br s,NH).
- ¹² PMR(200MHz,CDCl₃): δ 1.65(3H,d,J 6.5Hz,CH₃-C=), 2.80(1H,d,J 12Hz,H-4a), 3.47 (1H, br d, J 11Hz, H-12b), $3.84(1H,d,J 12Hz,H-4\beta)$, $5.33(1H,q,J 6.5Hz,H-C=)$, 7.86(lH,br s,NH).
- 13 M.F.Semmelhack, J.C.Tomesch, M.Czarny, and S.Boettger, J.Org.Chem., 42 , 1259 (1978).
- **v_{max}(CHCl₂):1720(C=O) 1040,1018,930 cm '(P=O); PMR(CDCl₃): 61.36(6H,t,J 7** Hz,CH₃-CH₂), 3.20(1H,dt,J 23,7Hz,H-C-P), 3.80(3H,s,CO₂CH₃), 3.84(2H,t,J 7 Hz,CH_2-N), $4.24(2H,dq,J$ 7Hz, CH_2-O-P), 10.36(1H, br s, NH).
- (9a):m.p. 236°C(MeOH); v_{max} (CHCl₃):1625(C=O),960 cm⁻¹(P=O); PMR(200MHz,DMSOd₆): 61.15 and 1.26(6H, 2 t, J 7Hz, CH₃-CH₂), 2.91(1H, dt, J 12, 4Hz, H-6a), 4.02 and 4.06(4H,2xquint,J 7Hz,CH₃-CH₂-O-P), 4.89(1H,m,W_{1/2} 12Hz,H-12b), 5.00(1H, dd,J 12,4Hz,H-68), 7.04 and 7.13(2H,2xt,J 8.5Hz,H-9 and H-IO), 7.39 and 7.48(2H,2xd,J 8.5Hz,H-8 and H-11), 10.92(1H,br s,NH). (9b); PMR(CDCl₃): δ 1.33 and 1.35(6H,2xt,J 7Hz,CH₃-CH₂), 4.15(4H,2xquint,J 7Hz,CH₃-CH₂-O-P), 4.8l(lH,ddd,J 10,5,2Hz,H-68), 5.09(lH,dd,J 8.5,2.5Hz,H-12b), 8.44(lH,br s,NH).
- ¹⁶ PMR(200MHz,DMSO-d₆):61.72(3H,J 8Hz,CH₃-C=), 4.86(1H,dd,J 12,2Hz,H-12b),4.9 (1H,dd,J 13,2.5Hz,H-6 β), 6.74(1H,q,J 8Hz,H-C=), 6.95 and 7.05(2H,2xt,J 8Hz, H-9 and H-IO), 7.30 and 7.39(2H,2xd,J 8Hz,H-8 and H-II), 10.92(lH,br s,NH).
- ¹⁷ B.Danieli, G.Lesma, and G.Palmisano, <u>J.C.S.Chem</u>.Commun.,860(1980); Tetrahedron Letters, 1827(1981); Gazz.Chim. Ital., 111, 257(1981).
- ¹⁸ W.R.Ashcroft and J.A.Joule, <u>Heterocycles,16</u>,1883(1981). (12a); PMR(CDCl₃): 62.28 (1H,t,J 10Hz,H-4a), 3.21(1H,ddd,J 10,4,2Hz,H-4 β), 3.92(1H,tt,J 10,4Hz, $H-3)$, 7.75(1H,br s,NH). (12b); PMR(CDCl₃):62.60(1H,dd,J 11,2Hz,H-4a), 3.00 $(1H, dt, J 11, 2Hz, H-4\beta)$, 3.30(1H,dd,J 10,2Hz,H-12b), 3.94(1H,br s,W y_2 8Hz,H-3).
- *19* $v_{\text{max}}(\text{CHCl}_3):2845,2800,2730(Bb),1720 \text{ cm}^{-1}(\text{C=0}); \text{ PMR}(\text{CDCl}_3): 63.05(1\text{H},\text{d},\text{J} 14\text{Hz},$ H-4a), 3.45(1H,d,J 14Hz,H-4 β), 4.19(1H,dd,J 8,1Hz,H-12b), 8.11(1H,br s,NH).

(Received in UK 23 March 1982)